Rakusa, E., Reinke, C., Doblhammer, G., Radbruch, L., Schmid, M., & Welchowski, T. (2025). Dementia as a predictor of palliative care: Uncovering patient patterns based on german claims data. BMC Palliative Care, 24, 46.
[bib] [doi:10.1186/s12904-025-01672-y] [url]
Siener, R., Ernsten, C., Welchowski, T., & Hesse, A. (2024). Metabolic profile of calcium oxalate stone patients with enteric hyperoxaluria and impact of dietary intervention. Nutrients, 16.
[bib] [doi:10.3390/nu16162688] [url]
Praktiknjo, M., Pena Solano, A. S., Sadeghlar, F., Welchowski, T., Schmid, M., Möhring, C., Zhou, T., Mahn, R., Monin, M. B., Meyer, C., Feldmann, G., Brossart, P., Beekum, C., Semaan, A., Matthaei, H., Manekeller, S., Sprinkart, A. M., Nowak, S., Luetkens, J., … Gonzalez-Carmona, M. A. (2023). The impact of lenvatinib on sarcopenia in patients with advanced unresectable hepatocellular carcinoma. Research Square.
[bib] [doi:10.21203/rs.3.rs-2771181/v1] [url]
Welchowski, T., & Edelmann, D. (2024). Interaction difference hypothesis test for prediction models. Machine Learning and Knowledge Extraction, 6, 1298–1322.
[bib] [doi:10.3390/make6020061] [url]
Thielmann, A., Schmitz, M.-T., Welchowski, T., & Weltermann, B. (2024). Effectiveness of the online-eLearning program KeepCoool at improving the vaccine cold chain in general practices. PLOS ONE, 19.
[bib] [doi:10.1371/journal.pone.0301847] [url]
Müller, S., Welchowski, T., Schmid, M., Maintz, L., Herrmann, N., Wilsmann-Theis, D., Royeck, T., Havenith, R., & Bieber, T. (2023). Development of a clinical algorithm to predict phenotypic switches between atopic dermatitis and psoriasis (the "Flip-Flop" phenomenon). Allergy, 79, 164–173.
[bib] [doi:10.1111/all.15921] [url]
Li, J. Q., Welchowski, T., Schmid, M., & Finger, R. P. (2023). Prevalence and incidence of registered severe visual impairment and blindness due to uveitis in Germany. Ocular Immunology and Inflammation, 32(5), 735--739.
[bib] [doi:10.1080/09273948.2023.2201324] [url]
Maintz, L., Welchowski, T., Herrmann, N., Brauer, J., Traidl-Hoffmann, C., Havenith, R., Müller, S., Rhyner, C., Dreher, A., Schmid, M., Bieber, T., Schmid-Grendelmeier, P., Akdis, C., Lauener, R., Brüggen, M.-C., Bersuch, E., Neumann, A., Hammel, G., Renner, E. D., … Reiger, M. (2023). IL-13, periostin and dipeptidyl-peptidase-4 reveal endotype-phenotype associations in atopic dermatitis. Allergy, 78, 1554–1569.
[bib] [doi:10.1111/all.15647] [url]
Güresir, E., Welchowski, T., Lampmann, T., Brandecker, S., Güresir, A., Wach, J., Lehmann, F., Dorn, F., Velten, M., & Vatter, H. (2022). Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: The results of induced hypertension only after the IMCVS Trial—A prospective cohort study. Journal of Clinical Medicine, 11(19).
[bib] [doi:10.3390/jcm11195850] [url]
Welchowski, T., Amarell, N., Schroeder, J., Wehner, M., Wild, D., & Weltermann, B. (2022). Effectiveness of the EPA-Based “Toolbox Family Medicine” on students’ learning satisfaction: Study protocol for a controlled trial. medRxiv.
[bib] [doi:10.1101/2022.01.18.22269060] [url]
Güresir, E., Gräff, I., Seidel, M., Bauer, H., Coch, C., Diepenseifen, C., Dohmen, C., Engels, S., Hadjiathanasiou, A., Heister, U., Heyer, I., Lampmann, T., Paus, S., Petzold, G., Pöhlau, D., Putensen, C., Schneider, M., Schuss, P., Textor, J., … Vatter, H. (2022). Aneurysmal subarachnoid hemorrhage during the shutdown for COVID-19. Journal of Clinical Medicine, 11(9).
[bib] [doi:10.3390/jcm11092555] [url]
Reinke, C., Doblhammer, G., Schmid, M., & Welchowski, T. (2022). Dementia risk predictions from German claims data using methods of machine learning. Alzheimer’s Dement, 477--486.
[bib] [doi:10.1002/alz.12663] [url]
Sakai, T., Herrmann, N., Maintz, L., Nümm, T. J., Welchowski, T., Claus, R. A., Gräler, M. H., & Bieber, T. (2022). Altered serum phospholipids in atopic dermatitis and association with clinical status. JID Innovations, 2(2).
[bib] [doi:10.1016/j.xjidi.2021.100092] [url]
Wild, D., Linden, K., Welchowski, T., Dehnen, D., & Weltermann, B. (2022). Attitudes of german GP trainees regarding add-on training programs differ if in office or hospital training phase. BMC Medical Education, 22(1).
[bib] [doi:10.1186/s12909-022-03273-2] [url]
Jäger, S. C., Filbert, A.-L., Welchowski, T., & Weltermann, B. (2021). Effects of the dementia care toolbox on personnel’s self-reported confidence in patient care: A CRT in general practices. BMC Family Practice, 22(1).
[bib] [doi:10.1186/s12875-021-01577-8] [url]
Mikus, M., Welchowski, T., Schindler, E., Schneider, M., Mini, N., & Vergnat, M. (2021). Sedation versus general anesthesia for cardiac catheterization in infants: A retrospective, monocentric, cohort evaluation. Journal of Clinical Medicine, 10(23).
[bib] [doi:10.3390/jcm10235648] [url]
Maintz, L., Welchowski, T., Herrmann, N., Brauer, J., Kläschen, A. S., Fimmers, R., Schmid, M., Bieber, T., Schmid-Grendelmeier, P., Traidl-Hoffmann, C., Akdis, C., Lauener, R., Brüggen, M.-C., Rhyner, C., Bersuch, E., Renner, E., Reiger, M., Dreher, A., Hammel, G., … Lang, C. (2021). Machine learning—based deep phenotyping of atopic dermatitis. JAMA Dermatology.
[bib] [doi:10.1001/jamadermatol.2021.3668] [url]
Welchowski, T., Maloney, K. O., Mitchell, R., & Schmid, M. (2021). Techniques to improve ecological interpretability of black-box machine learning models. Journal of Agricultural, Biological and Environmental Statistics, 27, 175--197.
[bib] [doi:10.1007/s13253-021-00479-7] [url]
Bommert, A., Welchowski, T., Schmid, M., & Rahnenführer, J. (2021). Benchmark of filter methods for feature selection in high-dimensional gene expression survival data. Briefings in Bioinformatics, 23(1).
[bib] [doi:10.1093/bib/bbab354] [url]
Sakai, T., Herrmann, N., Maintz, L., Nümm, T. J., Welchowski, T., & Bieber, T. (2021). Serum receptor activator of nuclear factor kappa-Β ligand/osteoprotegerin ratio correlates with severity and suggests fracture’s risk in older women with atopic dermatitis. Allergy, 76, 3220–3223.
[bib] [doi:10.1111/all.14971] [url]
Edelmann, D., Welchowski, T., & Benner, A. (2021). A consistent version of distance covariance for right‐censored survival data and its application in hypothesis testing. Biometrics, 78(3), 867–879.
[bib] [doi:10.1111/biom.13470] [url]
Pulvermacher, C., Vondel, P. Van de, Gerzen, L., Gembruch, U., Welchowski, T., Schmid, M., & Merz, W. M. (2021). Analysis of cesarean section rates in two german hospitals applying the 10-Group classification system. Journal of Perinatal Medicine, 49(7), 818–829.
[bib] [doi:10.1515/jpm-2020-0505] [url]
Sakai, T., Herrmann, N., Maintz, L., Nümm, T. J., Welchowski, T., Claus, R. A., Gräler, M. H., & Bieber, T. (2021). Serum sphingosine-1-phosphate is elevated in atopic dermatitis and associated with severity. Allergy, 2592–2595.
[bib] [doi:10.1111/all.14826] [url]
Winkler, C., Linden, K., Mayr, A., Schultz, T., Welchowski, T., Breuer, J., & Herberg, U. (2020). RefCurv: A software for the construction of pediatric reference curves. Software Impacts, 6.
[bib] [doi:10.1016/j.simpa.2020.100040] [url]
Schmid, M., Welchowski, T., Wright, M. N., & Berger, M. (2020). Discrete-time survival forests with hellinger distance decision trees. Data Mining and Knowledge Discovery, 34(3), 812–832.
[bib] [doi:10.1007/s10618-020-00682-z] [url]
Djourabchi Borojerdi, A. S., Welchowski, T., Peng, W., Buchen, A., Novak, N., Haidl, G., Duan, Y.-G., & Allam, J.-P. (2020). Human spermatozoa of male patients with subfertility express the interleukin-6 receptor. Andrologia.
[bib] [doi:10.1111/and.13511] [url]
Hadjiathanasiou, A., Schuss, P., Brandecker, S., Welchowski, T., Schmid, M., Vatter, H., & Güresir, E. (2020). Multiple aneurysms in subarachnoid hemorrhage - identification of the ruptured aneurysm, when the bleeding pattern is not self-explanatory - development of a novel prediction score. BMC Neurology, 20.
[bib] [doi:10.1186/s12883-020-01655-x] [url]
Li, J. Q., Welchowski, T., Schmid, M., Mauschitz, M. M., Holz, F. G., & Finger, R. P. (2019). Prevalence and incidence of age-related macular degeneration in europe: A systematic review and meta-analysis. British Journal of Ophthalmology, 1077–1084.
[bib] [doi:10.1136/bjophthalmol-2019-314422] [url]
Li, J. Q., Welchowski, T., Schmid, M., Letow, J., Wolpers, C., Pascual-Camps, I., Holz, F. G., & Finger, R. P. (2019). Prevalence, incidence and future projection of diabetic eye disease in europe: a systematic review and meta-analysis. European Journal of Epidemiology, 11–23.
[bib] [doi:10.1007/s10654-019-00560-z] [url]
Li, J. Q., Welchowski, T., Schmid, M., Holz, F. G., & Finger, R. P. (2019). Incidence of rhegmatogenous retinal detachment in europe – a systematic review and meta-analysis. Ophthalmologica, 242(2), 81–86.
[bib] [doi:10.1159/000499489] [url]
Welchowski, T., Zuber, V., & Schmid, M. (2019). Correlation-adjusted regression survival scores for high-dimensional variable selection. Statistics in Medicine, 38(13), 2413–2427.
[bib] [doi:10.1002/sim.8116] [url]
Li, J. Q., Terheyden, J. H., Welchowski, T., Schmid, M., Letow, J., Wolpers, C., Holz, F. G., & Finger, R. P. (2018). Prevalence of retinal vein occlusion in europe: A systematic review and meta-analysis. Ophthalmologica, 241(4), 183–189.
[bib] [doi:10.1159/000494224] [url]
Berger, M., Schmid, M., Welchowski, T., Schmitz-Valckenberg, S., & Beyersmann, J. (2018). Subdistribution hazard models for competing risks in discrete time. Biostatistics, 21(3), 449–466.
[bib] [doi:10.1093/biostatistics/kxy069] [url]
Berger, M., Welchowski, T., Schmitz-Valckenberg, S., & Schmid, M. (2018). A classification tree approach for the modeling of competing risks in discrete time. Advances in Data Analysis and Classification, 13, 965–990.
[bib] [doi:10.1007/s11634-018-0345-y] [url]
Welchowski, T., & Schmid, M. (2018). Sparse kernel deep stacking networks. Computational Statistics, 34(3), 993–1014.
[bib] [doi:10.1007/s00180-018-0832-9] [url]
Schmid, M., Tutz, G., & Welchowski, T. (2018). Discrimination measures for discrete time-to-event predictions. Econometrics and Statistics, 7, 153–164.
[bib] [doi:10.1016/j.ecosta.2017.03.008] [url]
Welchowski, T., & Schmid, M. (2016). A framework for parameter estimation and model selection in kernel deep stacking networks. Artificial Intelligence in Medicine, 70, 31–40.
[bib] [doi:10.1016/j.artmed.2016.04.002] [url]
Stollenwerk, B., Welchowski, T., Vogl, M., & Stock, S. (2015). Cost-of-illness studies based on massive data: a prevalence-based, top-down regression approach. The European Journal of Health Economics, 17, 235–244.
[bib] [doi:10.1007/s10198-015-0667-z] [url]