Strobl, C., Kopf, J., Kohler, L., von Oertzen, T. & Zeileis, A.
(2020).
Anchor point selection: An approach for anchoring without anchor items.
Applied Psychological Measurement,
.
[bib]
[technical report]
Debeer, D. & Strobl, C.
(2020).
Conditional permutation importance revisited.
BMC Bioinformatics,
21(1), 307.
[bib]
[doi:10.1186/s12859-020-03622-2]
Hundt, M., Rautionaho, P. & Strobl, C.
(2020).
Progressive or simple? A corpus-based study of aspect in World Englishes.
Corpora,
15(1), 77-106.
[bib]
[technical report]
Fokkema, M. & Strobl, C.
(2020).
Fitting Prediction Rule Ensembles to Psychological Research Data: An Introduction and Tutorial.
Psychological Methods,
25(5), 636-652.
[bib]
[doi:doi:10.1037/met0000256]
[technical report]
Huelmann, T., Debelak, R. & Strobl, C.
(2020).
A comparison of aggregation rules for selecting anchor items in multi group DIF analysis.
Journal of Educational Measurement,
57(2), 185-215.
[bib]
[doi:10.1111/jedm.12246]
Debelak, R. & Strobl, C.
(2019).
Investigating Measurement Invariance by Means of Parameter Instability Tests for 2PL and 3PL Models.
Educational and Psychological Measurement, 79(2), 385-398.
.
[bib]
[doi:10.1177/0013164418777784]
Philipp, M., Rusch, T., Hornik, K. & Strobl, C.
(2018).
Measuring the Stability of Results from Supervised Statistical Learning.
Journal of Computational and Graphical Statistics,
27(4), 685-700.
[bib]
[doi:10.1080/10618600.2018.1473779]
[technical report]
Philipp, M., Strobl, C., de la Torre, J. & Zeileis, A.
(2018).
On the Estimation of Standard Errors in Cognitive Diagnosis Models.
Journal of Educational and Behavioral Statistics,
43(1), 88-115.
[bib]
[doi:10.3102/1076998617719728]
[technical report]
Wang, T., Strobl, C., Zeileis, A. & Merkle, E. C.
(2018).
Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation.
Psychometrika,
, 132-155.
[bib]
[doi:10.1007/s11336-017-9591-8]
[technical report]
Komboz, B., Strobl, C. & Zeileis, A.
(2017).
Tree-Based Global Model Tests for Polytomous Rasch Models.
Educational and Psychological Measurement,
78(1), 128-166.
[bib]
[doi:10.1177/0013164416664394]
[technical report]
Frick, H., Strobl, C. & Zeileis, A.
(2015).
Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications.
Educational and Psychological Measurement,
75(2), 208-234.
[bib]
[doi:10.1177/0013164414536183]
[technical report]
Kopf, J., Zeileis, A. & Strobl, C.
(2015).
A Framework for Anchor Methods and an Iterative Forward Approach for DIF Detection.
Applied Psychological Measurement,
39(2), 83-103.
[bib]
[doi:10.1177/0146621614544195]
[technical report]
Kopf, J., Zeileis, A. & Strobl, C.
(2015).
Anchor Selection Strategies for DIF Analysis: Review, Assessment, and New Approaches.
Educational and Psychological Measurement,
75(1), 22-56.
[bib]
[doi:10.1177/0013164414529792]
[technical report]
Mueller, J., Wende, B., Strobl, C., Eugster, M., Gallenberger, I., Floren, A., Steffan-Dewenter, I., Linsenmair, K. E., Weisser, W. W. & Gossner, M. M.
(2015).
Forest management and regional tree composition drive the host preference of saproxylic beetle communities.
Journal of Applied Ecology,
52(3), 753-762.
[bib]
[doi:10.1111/1365-2664.12421]
Strobl, C., Kopf, J. & Zeileis, A.
(2015).
Rasch trees: A New Method for Detecting Differential Item Functioning in the Rasch Model.
Psychometrika,
80(2), 289-316.
[bib]
[doi:10.1007/s11336-013-9388-3]
[technical report]
Boulesteix, A.-L., Janitza, S., Hapfelmeier, A., Van Steen, K. & Strobl, C.
(2014).
Letter to the Editor: On the term 'interaction' and related phrases in the literature on Random Forests.
Briefings in Bioinformatics,
16(2), 338-345.
[bib]
[doi:10.1093/bib/bbu012]
Eugster, M., Leisch, F. & Strobl, C.
(2014).
(Psycho-)Analysis of Benchmark Experiments - A Formal Framework for Investigating the Relationship between Data Sets and Learning Algorithms.
Computational Statistics & Data Analysis,
71(SI), 986-1000.
[bib]
[doi:10.1016/j.csda.2013.08.007]
[technical report]
Hapfelmeier, A., Hothorn, T., Ulm, K. & Strobl, C.
(2014).
A new variable importance measure for random forests with missing data.
Statistics and Computing,
24(1), 21-34.
[bib]
[doi:10.1007/s11222-012-9349-1]
Janitza, S., Strobl, C. & Boulesteix, A.-L.
(2013).
An AUC-based Permutation Variable Importance Measure for Random Forests.
BMC Bioinformatics,
14(119).
[bib]
[doi:10.1186/1471-2105-14-119]
Sauer, S., Strobl, C., Walach, H. & Kohls, N.
(2013).
Rasch-Analyse des Freiburger Fragebogens zur Achtsamkeit.
Diagnostica,
59(2), 86-99.
[bib]
[doi:10.1026/0012-1924/a000084]
Boulesteix, A.-L., Bender, A., Lorenzo Bermejo, J. & Strobl, C.
(2012).
Random Forest Gini Importance Favours SNPs with Large Minor Allele Frequency: Impact, Sources and Recommendations.
Briefings in Bioinformatics,
13(3), 292-304.
[bib]
[doi:10.5282/ubm/epub.12224]
Frick, H., Strobl, C., Leisch, F. & Zeileis, A.
(2012).
Flexible Rasch Mixture Models with Package psychomix.
Journal of Statistical Software,
48(7), 1-25.
[bib]
[doi:10.18637/jss.v048.i07]
Wickelmaier, F., Strobl, C. & Zeileis, A.
(2012).
Psychoco: Psychometric Computing in R.
Journal of Statistical Software,
48(7), 1-5.
[bib]
[doi:10.18637/jss.v048.i01]
Strobl, C., Wickelmaier, F. & Zeileis, A.
(2011).
Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning.
Journal of Educational and Behavioral Statistics,
36(2), 135-153.
[bib]
[doi:10.5282/ubm/epub.10588]
Nicodemus, K., Malley, J., Strobl, C. & Ziegler, A.
(2010).
The Behaviour of Random Forest Permutation-Based Variable Importance Measures under Predictor Correlation.
BMC Bioinformatics,
11(110), 1471-2105.
[bib]
[doi:10.1186/1471-2105-11-110]
Boulesteix, A.-L. & Strobl, C.
(2009).
Optimal Classifier Selection and Negative Bias in Error Rate Estimation: An Empirical Study on High-Dimensional Prediction.
BMC Medical Research Methodology,
9(85), 1471-2288.
[bib]
[doi:10.1186/1471-2288-9-85]
Strobl, C. & Augustin, T.
(2009).
Adaptive Selection of Extra Cutpoints -- An Approach Towards Reconciling Robustness and Interpretability in Classification Trees.
Journal of Statistical Theory and Practice,
3(1), 119-135.
[bib]
[doi:10.1080/15598608.2009.10411915]
Strobl, C., Hothorn, T. & Zeileis, A.
(2009).
Party on! A New, Conditional Variable Importance Measure for Random Forests Available in the party Package.
The R Journal,
1(2), 14-17.
[bib]
[url]
Strobl, C., Malley, J. & Tutz, G.
(2009).
An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests.
Psychological Methods,
14(4), 323-348.
[bib]
[doi:10.5282/ubm/epub.10589]
Boulesteix, A.-L., Strobl, C., Augustin, T. & Daumer, M.
(2008).
Evaluating Microarray-Based Classifiers: An Overview.
Cancer Informatics,
6, 77-97.
[bib]
[url]
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A.
(2008).
Conditional Variable Importance for Random Forests.
BMC Bioinformatics,
9(307), 1471-2105.
[bib]
[doi:10.1186/1471-2105-9-307]
Strobl, C., Weidinger, S., Baurecht, H., Wagenpfeil, S., Henderson, J., Novak, N., Sandilands, A., Chen, H., Rodriguez, E., O'Regan, G., Watson, R., Liao, H., Zhao, Y., Barker, J., Allen, M., Reynolds, N., Meggit, S., Northstone, K. & Smith, G.
(2008).
Analysis of the Individual and Aggregate Genetic Contributions of Previously Identified SPINK5 , KLK7 and FLG Polymorphisms to Eczema Risk.
The Journal of Allergy and Clinical Immunology,
122(3), 560-568.
[bib]
[doi:10.1016/j.jaci.2008.05.050]
Boulesteix, A.-L. & Strobl, C.
(2007).
Maximally Selected Chi-Square Statistics and Non-Monotonic Associations: An Exact Approach Based on Two Cutpoints.
Computational Statistics & Data Analysis,
51(12), 6295-6306.
[bib]
[doi:10.1016/j.csda.2007.01.017]
Boulesteix, A.-L., Strobl, C., Weidinger, S., Wichmann, H. E. & Wagenpfeil, S.
(2007).
Multiple Testing for SNP-SNP Interactions.
Statistical Applications in Genetics and Molecular Biology,
6(1), 37.
[bib]
[doi:10.2202/1544-6115.1315]
Strobl, C., Boulesteix, A.-L. & Augustin, T.
(2007).
Unbiased Split Selection for Classification Trees Based on the Gini Index.
Computational Statistics & Data Analysis,
52(1), 483-501.
[bib]
[doi:10.1016/j.csda.2006.12.030]
[technical report]
Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T.
(2007).
Bias in random forest variable importance measures: Illustrations, sources and a solution.
BMC Bioinformatics,
8(25), 1471-2105.
[bib]
[doi:10.1186/1471-2105-8-25]
Philipp, M., Zeileis, A. & Strobl, C.
(2016).
"A Toolkit for Stability Assessment of Tree-Based Learners."
Proceedings of COMPSTAT 2016 – 22nd International Conference on Computational Statistics,
edited by I. A. Colubi, A. Blanco & C. Gatu, Oviedo.
[bib]
[technical report]
Frick, H., Strobl, C. & Zeileis, A.
(2014).
"To Split or to Mix? Tree vs. Mixture Models for Detecting Subgroups."
COMPSTAT 2014 -- Proceedings in Computational Statistics,
edited by M. Gilli, G. González-Rodríguez & A. Nieto-Reyes.
[bib]
[technical report]
Strobl, C., Kopf, J. & Zeileis, A.
(2010).
Wissen Frauen weniger oder nur das Falsche? -- Ein statistisches Modell für unterschiedliche Aufgaben-Schwierigkeiten in Teilstichproben.
In S. Trepte & M. Verbeet (Eds.).
Allgemeinbildung in Deutschland -- Erkenntnisse aus dem SPIEGEL Studentenpisa-Test
(255-272).
Wiesbaden:
VS Verlag.
[bib]
Strobl, C. & Zeileis, A.
(2008).
"Danger: High Power! -- Exploring the Statistical Properties of a Test for Random Forest Variable Importance."
Proceedings of the 18th International Conference on Computational Statistics, Porto, Portugal (CD-ROM),
edited by P. Brito, Heidelberg.
[bib]
[technical report]
Strobl, C.
(2005).
"Variable Selection in Classification Trees Based on Imprecise Probabilities."
Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications,
edited by F. Cozman, R. Nau & T. Seidenfeld, Pittsburgh.
[bib] [url]
Gloor, J., Strobl, C. & Debelak, R.
(2020).
DSI Insights: Wege aus der Angst vor Algorithmen.
Inside IT Kolumne,
.
[bib]
[url]
Meiser, T., Eid, M., Carstensen, C., Erdfelder, E., Gollwitzer, M., Pohl, S., Steyer, R. & Strobl, C.
(2018).
Positionspapier zur Rolle der Psychologischen Methodenlehre in Forschung und Lehre.
Psychologische Rundschau,
69, 325-331.
[bib]
[doi:10.1026/0033-3042/a000417]
Bollmann, S., Cook, D., Dumas, J., Fox, J., Josse, J., Keyes, O., Strobl, C., Turner, H. & Debelak, R.
(2017).
A First Survey on the Diversity of the R Community.
The R Journal,
9(2), 541-552.
[bib]
[url]
Strobl, C.
(2014).
Discussion to Wei-Yin Lohs "Fifty Years of Classification and Regression Trees".
International Statistical Review,
82(3), 349-352.
[bib]
Kopf, J., Augustin, T. & Strobl, C.
(2013).
The Potential of Model-Based Recursive Partitioning in the Social Sciences: Revisiting Ockam's Razor.
In J. McArdle & G. Ritschard (Eds.).
Contemporary Issues in Exploratory Data Mining
(75-95).
New York:
Routeledge.
[bib]
Strobl, C.
(2013).
Data Mining.
In T. Little (Ed.).
The Oxford Handbook on Quantitative Methods
(678-700).
New York:
Oxford University Press USA.
[bib]
Strobl, C.
(2010).
Advances in Social Science Research Using R (Book Review).
Journal of Statistical Software,
34(2), 1-2.
[bib]
[doi:10.18637/jss.v034.b02]
Strobl, C., Dittrich, C., Seiler, C., Hackensperger, S. & Leisch, F.
(2009).
Measurement and Predictors of a Negative Attitude towards Statistics among LMU Students.
In T. Kneib & G. Tutz (Eds.).
Statistical Modelling and Regression Structures
(217-230).
Berlin:
Springer.
[bib]
Tutz, G. & Strobl, C.
(2009).
Generalisierte lineare Modelle.
In H. Holling & B. Schmitz (Eds.).
Handbuch der Psychologie, Band 13: Handbuch Statistik, Methoden und Evaluation
(461-472).
Göttingen:
Hogrefe.
[bib]
Augustin, T. & Strobl, C.
(2006).
Interactive Statistics for the Behavioral Sciences (Book Review).
Biometrics,
62, 625-626.
[bib]
[doi:10.1111/j.1541-0420.2006.00589_1.x]
Strobl, C.
(2012).
Das Rasch-Modell - Eine verständliche Einführung für Studium und Praxis.
München, Mering:
Rainer Hampp Verlag.
[bib]
Strobl, C.
(2010).
Das Rasch-Modell - Eine verständliche Einführung für Studium und Praxis.
München, Mering:
Rainer Hampp Verlag.
[bib]
Debeer, D., Hothorn, T. & Strobl, C.
permimp: Conditional Permutation Importance.
[bib] [url]
Philipp, M., Strobl, C., Zeileis, A., Rusch, T. & Hornik, K.
stablelearner: A Toolkit for Stability Assessment of Tree-Based Learners.
[bib] [url]
Frick, H., Strobl, C., Leisch, F. & Zeileis, A.
psychomix: Psychometric Mixture Models.
[bib] [url]
Zeileis, A., Strobl, C., Wickelmaier, F., Komboz, B., Kopf, J., Schneider, L. & Debelak, R.
psychotools: Infrastructure for Psychometric Modeling.
[bib] [url]
Zeileis, A., Strobl, C., Wickelmaier, F. & Kopf, J.
psychotree: Recursive Partitioning Based on Psychometric Models.
[bib] [url]
Hothorn, T., Hornik, K., Strobl, C. & Zeileis, A.
party: A Laboratory for Recursive Part(y)itioning.
[bib] [url]
Strobl, C.
(2002).
Experimental Study on the Relationship between Perceived Binocular Direction and Distance.
Department of Psychology, Universität Regensburg, Germany.
[bib]
Strobl, C.
(2004).
Variable Selection Bias in Classification Trees.
Department of Statistics, Ludwig-Maximilians-Universität München, Germany.
[bib]
Strobl, C.
(2008).
Statistical Issues in Machine Learning -- Towards Reliable Split Selection and Variable Importance Measures.
Department of Statistics, Ludwig-Maximilians-Universität München, Germany.
[bib]
Strobl, C.
(2011).
Contributions to Psychometric Computing and Machine Learning.
Department of Statistics, Ludwig-Maximilians-Universität München, Germany.
[bib]
Schneider, L., Zeileis, A. & Strobl, C.
(2020).
Descriptive and Graphical Analysis of the Variable and Cutpoint Selection inside Random Forests.
[bib] [url]
Strobl, C., Kopf, J. & Zeileis, A.
(2011).
Using the raschtree function for detecting differential item functioning in the Rasch model.
[bib] [url]
Rieger, A., Hothorn, T. & Strobl, C.
(2010).
Random Forests with Missing Values in the Covariates.
Department of Statistics, Ludwig-Maximilians-Universität München, Germany.
[bib]
Strobl, C.
(2005).
Statistical Sources of Variable Selection Bias in Classification Trees Based on the Gini Index.
Department of Statistics, Ludwig-Maximilians-Universität München, Germany.
[bib]
Strobl, C. & Reimer, R.
Studierendenvertretung der Ludwig-Maximilians-Universität München, G. (Ed.).
(2004).
Akzeptanz von Studiengebühren für das Erststudium .
[bib]